• Space/Science
  • GeekSpeak
  • Mysteries of
    the Multiverse
  • Science Fiction
  • The Comestible Zone
  • Off-Topic
  • Community
  • Flame
  • CurrentEvents

Recent posts

Plan(et) 9 from Outer Space BuckGalaxy May 13, 2025 10:58 am (Space/Science)

Shouldn't there be an Afrikaaner-American studies department in our universities? ER May 12, 2025 2:59 pm (CurrentEvents)

The April numbers ER May 8, 2025 5:59 am (Space/Science)

The Orange Criminal POS abandons another ally BuckGalaxy May 7, 2025 10:18 am (CurrentEvents)

Orion spacecraft for crewed Artemis II lunar mission ready BuckGalaxy May 3, 2025 8:13 pm (Space/Science)

Australia election more bad news conservatives BuckGalaxy May 3, 2025 11:54 am (CurrentEvents)

Massive cuts to NASA budget proposed BuckGalaxy May 3, 2025 9:19 am (Space/Science)

Say what? ER May 1, 2025 8:53 pm (CurrentEvents)

Radio Broadcasts BuckGalaxy May 1, 2025 12:28 pm (Space/Science)

The Last of Us BuckGalaxy April 30, 2025 12:37 pm (Science Fiction)

You can't make this stuff up... RobVG April 29, 2025 1:43 pm (CurrentEvents)

Home » Space/Science

The Virus Wears Chain Mail . . . October 15, 2014 10:35 am DanS

The Epstein–Barr Virus Wears Chain Mail
Electron microscopy reveals a meshlike protective layer in the viruses that cause herpes and mononucleosis, among other disorders

October 13, 2014 |By Diana Crow

The Epstein–Barr virus and its relatives in the herpesvirus family are known for their longevity. They persist in host tissues for years, causing diseases like mononucleosis, Kaposi’s sarcoma and herpes, and are notoriously difficult to kill. University of California, Los Angeles, biophysicist Z. Hong Zhou thinks the secret to herpesviruses’ resilience may be a layer of microscopic chain mail.

Zhou and his colleagues examined the outer shells, or capsids, of a primate herpesvirus under an electron microscope and saw a pattern of interlocking protein rings. Those rings form a mesh that can withstand intense pressures and explain why herpesviruses can maintain decades-long infections.

The study, published in the October 7 issue of Structure, marks the first time anyone has been able to bring the herpesvirus structure into focus—literally. Solving the configuration of a viral capsid requires both the ability to discern individual molecules and the ability to see how those molecules fit together in the viral shell.

More.

    Search

    The Control Panel

    • Log in
    • Register