• Space/Science
  • GeekSpeak
  • Mysteries of
    the Multiverse
  • Science Fiction
  • The Comestible Zone
  • Off-Topic
  • Community
  • Flame
  • CurrentEvents

Recent posts

So you Millennials think the world has given you a raw deal? ER November 25, 2025 5:27 pm (Off-Topic)

This is not a drill. NOT a drill. General Quarters, General Quarters. All hands man your battle stations. ER November 24, 2025 4:58 pm (CurrentEvents)

Xi called Trump RobVG November 24, 2025 10:26 am (CurrentEvents)

I thought this was fake news when I first saw it online BuckGalaxy November 23, 2025 10:13 pm (Space/Science)

And the worms ate into his brain BuckGalaxy November 23, 2025 7:37 pm (CurrentEvents)

Cracks propagate podrock November 22, 2025 8:54 pm (CurrentEvents)

Debunking simulation theory with more simulation theory RobVG November 20, 2025 3:09 pm (Space/Science)

SR72 RobVG November 20, 2025 1:00 pm (Off-Topic)

Carmakers want to build robot armies BuckGalaxy November 18, 2025 5:50 pm (Flame)

Just going to put this out there... BuckGalaxy November 16, 2025 10:46 pm (GeekSpeak)

Moonage Daydream BuckGalaxy November 16, 2025 2:48 pm (Space/Science)

Home » Space/Science

The Virus Wears Chain Mail . . . October 15, 2014 10:35 am DanS

The Epstein–Barr Virus Wears Chain Mail
Electron microscopy reveals a meshlike protective layer in the viruses that cause herpes and mononucleosis, among other disorders

October 13, 2014 |By Diana Crow

The Epstein–Barr virus and its relatives in the herpesvirus family are known for their longevity. They persist in host tissues for years, causing diseases like mononucleosis, Kaposi’s sarcoma and herpes, and are notoriously difficult to kill. University of California, Los Angeles, biophysicist Z. Hong Zhou thinks the secret to herpesviruses’ resilience may be a layer of microscopic chain mail.

Zhou and his colleagues examined the outer shells, or capsids, of a primate herpesvirus under an electron microscope and saw a pattern of interlocking protein rings. Those rings form a mesh that can withstand intense pressures and explain why herpesviruses can maintain decades-long infections.

The study, published in the October 7 issue of Structure, marks the first time anyone has been able to bring the herpesvirus structure into focus—literally. Solving the configuration of a viral capsid requires both the ability to discern individual molecules and the ability to see how those molecules fit together in the viral shell.

More.

    Search

    The Control Panel

    • Log in
    • Register