As Spock would say, “Fascinating.”
In October of last year, White was preparing for a talk he was to give for the kickoff to the 100 Year Starship project in Orlando, Florida. As he was pulling together his overview on space warp, he performed a sensitivity analysis for the field equations, more out of curiosity than anything else.
“My early results suggested I had discovered something that was in the math all along,” he recalled. “I suddenly realized that if you made the thickness of the negative vacuum energy ring larger — like shifting from a belt shape to a donut shape — and oscillate the warp bubble, you can greatly reduce the energy required — perhaps making the idea plausible.” White had adjusted the shape of Alcubierre’s ring which surrounded the spheroid from something that was a flat halo to something that was thicker and curvier.
He presented the results of his Alcubierre Drive rethink a year later at the 100 Year Starship conference in Atlanta where he highlighted his new optimization approaches — a new design that could significantly reduce the amount of exotic matter required. And in fact, White says that the warp drive could be powered by a mass that’s even less than that of the Voyager 1 spacecraft.
That’s a significant change in calculations to say the least. The reduction in mass from a Jupiter-sized planet to an object that weighs a mere 1,600 pounds has completely reset White’s sense of plausibility — and NASA’s.
- As soon as we figure out how to make a "negative vacuum energy ring" we will have it made.