Quasicrystal Meteorite Exposes Novel Processes in Early Solar System
When scientists traced a museum rock back to its origins, they uncovered mysteries about the early solar systemJun 18, 2014 |By Natalie Wolchover and Quanta Magazine
One January afternoon five years ago, Princeton geologist Lincoln Hollister opened an email from a colleague he’d never met bearing the subject line, “Help! Help! Help!” Paul Steinhardt, a theoretical physicist and the director of Princeton’s Center for Theoretical Science, wrote that he had an extraordinary rock on his hands, one that he thought was natural but whose origin and formation he could not identify. Hollister had examined tons of obscure rocks over his five-decade career and agreed to take a look.
Originally a dense grain two or three millimeters across that had been ground down into microscopic fragments, the rock was a mishmash of lustrous metal and matte mineral of a yellowish hue. It reminded Hollister of something from Oregon called josephinite. He told Steinhardt that such rocks typically form deep underground at the boundary between Earth’s core and mantle or near the surface due to a particular weathering phenomenon. “Of course, all of that ended up being a false path,” said Hollister, 75. The more the scientists studied the rock, the stranger it seemed.
From Quanta Magazine (find original story here).